Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroinform ; 18: 1284107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421771

RESUMO

Neuroscientists employ a range of methods and generate increasing amounts of data describing brain structure and function. The anatomical locations from which observations or measurements originate represent a common context for data interpretation, and a starting point for identifying data of interest. However, the multimodality and abundance of brain data pose a challenge for efforts to organize, integrate, and analyze data based on anatomical locations. While structured metadata allow faceted data queries, different types of data are not easily represented in a standardized and machine-readable way that allow comparison, analysis, and queries related to anatomical relevance. To this end, three-dimensional (3D) digital brain atlases provide frameworks in which disparate multimodal and multilevel neuroscience data can be spatially represented. We propose to represent the locations of different neuroscience data as geometric objects in 3D brain atlases. Such geometric objects can be specified in a standardized file format and stored as location metadata for use with different computational tools. We here present the Locare workflow developed for defining the anatomical location of data elements from rodent brains as geometric objects. We demonstrate how the workflow can be used to define geometric objects representing multimodal and multilevel experimental neuroscience in rat or mouse brain atlases. We further propose a collection of JSON schemas (LocareJSON) for specifying geometric objects by atlas coordinates, suitable as a starting point for co-visualization of different data in an anatomical context and for enabling spatial data queries.

2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314581

RESUMO

Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo/fisiologia , Percepção Visual/fisiologia , Lobo Parietal , Recompensa
3.
Nat Methods ; 20(11): 1822-1829, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783883

RESUMO

Volumetric brain atlases are increasingly used to integrate and analyze diverse experimental neuroscience data acquired from animal models, but until recently a publicly available digital atlas with complete coverage of the rat brain has been missing. Here we present an update of the Waxholm Space rat brain atlas, a comprehensive open-access volumetric atlas resource. This brain atlas features annotations of 222 structures, of which 112 are new and 57 revised compared to previous versions. It provides a detailed map of the cerebral cortex, hippocampal region, striatopallidal areas, midbrain dopaminergic system, thalamic cell groups, the auditory system and main fiber tracts. We document the criteria underlying the annotations and demonstrate how the atlas with related tools and workflows can be used to support interpretation, integration, analysis and dissemination of experimental rat brain data.


Assuntos
Mapeamento Encefálico , Encéfalo , Ratos , Animais , Córtex Cerebral , Dopamina , Análise de Dados , Imageamento por Ressonância Magnética
4.
Sci Data ; 10(1): 645, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735463

RESUMO

The orbitofrontal, posterior parietal, and insular cortices are sites of higher-order cognitive processing implicated in a wide range of behaviours, including working memory, attention guiding, decision making, and spatial navigation. To better understand how these regions contribute to such functions, we need detailed knowledge about the underlying structural connectivity. Several tract-tracing studies have investigated specific aspects of orbitofrontal, posterior parietal and insular connectivity, but a digital resource for studying the cortical and subcortical projections from these areas in detail is not available. We here present a comprehensive collection of brightfield and fluorescence microscopic images of serial coronal sections from 49 rat brain tract-tracing experiments, in which discrete injections of the anterograde tracers biotinylated dextran amine and/or Phaseolus vulgaris leucoagglutinin were placed in the orbitofrontal, parietal, or insular cortex. The images are spatially registered to the Waxholm Space Rat brain atlas. The image collection, with corresponding reference atlas maps, is suitable as a reference framework for investigating the brain-wide efferent connectivity of these cortical association areas.


Assuntos
Encéfalo , Córtex Insular , Animais , Ratos , Conhecimento , Memória de Curto Prazo , Processos Mentais
5.
Nat Commun ; 14(1): 5884, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735467

RESUMO

Registration of data to a common frame of reference is an essential step in the analysis and integration of diverse neuroscientific data. To this end, volumetric brain atlases enable histological datasets to be spatially registered and analyzed, yet accurate registration remains expertise-dependent and slow. In order to address this limitation, we have trained a neural network, DeepSlice, to register mouse brain histological images to the Allen Brain Common Coordinate Framework, retaining registration accuracy while improving speed by >1000 fold.


Assuntos
Ascomicetos , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Fases de Leitura , Neuroimagem
6.
Sci Data ; 10(1): 486, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495585

RESUMO

Brain atlases are important reference resources for accurate anatomical description of neuroscience data. Open access, three-dimensional atlases serve as spatial frameworks for integrating experimental data and defining regions-of-interest in analytic workflows. However, naming conventions, parcellation criteria, area definitions, and underlying mapping methodologies differ considerably between atlases and across atlas versions. This lack of standardized description impedes use of atlases in analytic tools and registration of data to different atlases. To establish a machine-readable standard for representing brain atlases, we identified four fundamental atlas elements, defined their relations, and created an ontology model. Here we present our Atlas Ontology Model (AtOM) and exemplify its use by applying it to mouse, rat, and human brain atlases. We discuss how AtOM can facilitate atlas interoperability and data integration, thereby increasing compliance with the FAIR guiding principles. AtOM provides a standardized framework for communication and use of brain atlases to create, use, and refer to specific atlas elements and versions. We argue that AtOM will accelerate analysis, sharing, and reuse of neuroscience data.


Assuntos
Atlas como Assunto , Encéfalo , Animais , Humanos , Camundongos , Ratos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Fluxo de Trabalho
7.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390046

RESUMO

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Assuntos
Encéfalo , Neurociências , Animais , Humanos , Camundongos , Ecossistema , Neurônios
8.
Cereb Cortex ; 33(13): 8247-8264, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37118890

RESUMO

Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relationships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1, but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas, which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Lobo Parietal
9.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909528

RESUMO

Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.

10.
Sci Data ; 10(1): 150, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944675

RESUMO

The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.


Assuntos
Encéfalo , Neuroglia , Ratos , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Metais , Neuroglia/citologia , Neuroglia/metabolismo , Zinco
11.
Front Neuroinform ; 17: 1154080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970659

RESUMO

Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.

12.
Science ; 378(6619): 488-492, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378966

RESUMO

Detailed knowledge about the neural connections among regions of the brain is key for advancing our understanding of normal brain function and changes that occur with aging and disease. Researchers use a range of experimental techniques to map connections at different levels of granularity in rodent animal models, but the results are often challenging to compare and integrate. Three-dimensional reference atlases of the brain provide new opportunities for cumulating, integrating, and reinterpreting research findings across studies. Here, we review approaches for integrating data describing neural connections and other modalities in rodent brain atlases and discuss how atlas-based workflows can facilitate brainwide analyses of neural network organization in relation to other facets of neuroarchitecture.


Assuntos
Atlas como Assunto , Mapeamento Encefálico , Encéfalo , Animais , Envelhecimento , Encéfalo/ultraestrutura
14.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262177

RESUMO

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Assuntos
Mapeamento Encefálico , Ponte , Animais , Axônios , Córtex Cerebral , Camundongos , Vias Neurais/fisiologia , Neurônios , Ponte/fisiologia
15.
Neuroimage ; 251: 118973, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131433

RESUMO

The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collaboration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precondition for research on large cohort data sets, better generalizability, and clinical translation.


Assuntos
Encéfalo , Computação em Nuvem , Animais , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Software
16.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35217544

RESUMO

Understanding the human brain is a "Grand Challenge" for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function. An example of a resource enabling such an integrated approach to neuroscientific discovery is the BigBrain, which spatially anchors tissue models and data across different scales and ensures that multiscale models are supported by the data, making the bridge to both basic neuroscience and medicine. Research at the intersection of neuroscience, computing and robotics has the potential to advance neuro-inspired technologies by taking advantage of a growing body of insights into perception, plasticity and learning. To render data, tools and methods, theories, basic principles and concepts interoperable, the Human Brain Project (HBP) has launched EBRAINS, a digital neuroscience research infrastructure, which brings together a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating insights and perspectives for societal benefits.


Assuntos
Neurociências , Robótica , Encéfalo , Cognição , Humanos , Redes Neurais de Computação
17.
Neuron ; 110(4): 600-612, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34914921

RESUMO

As neuroscience projects increase in scale and cross international borders, different ethical principles, national and international laws, regulations, and policies for data sharing must be considered. These concerns are part of what is collectively called data governance. Whereas neuroscience data transcend borders, data governance is typically constrained within geopolitical boundaries. An international data governance framework and accompanying infrastructure can assist investigators, institutions, data repositories, and funders with navigating disparate policies. Here, we propose principles and operational considerations for how data governance in neuroscience can be navigated at an international scale and highlight gaps, challenges, and opportunities in a global brain data ecosystem. We consider how to approach data governance in a way that balances data protection requirements and the need for open science, so as to promote international collaboration through federated constructs such as the International Brain Initiative (IBI).


Assuntos
Ecossistema , Neurociências , Segurança Computacional , Disseminação de Informação
19.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33506383

RESUMO

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Assuntos
Neurociências , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...